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The mixing properties of networks are usually inferred by comparing the degree of a node with the average
degree of its neighbors. This kind of analysis often leads to incorrect conclusions: Assortative patterns may
appear reversed by a mechanism known as Simpson’s paradox. We prove this fact by analytical calculations
and simulations on three classes of growing networks based on preferential attachment and fitness, where the
disassortative behavior observed is a spurious effect. Our results give a crucial contribution to the debate about
the origin of disassortative mixing, since networks previously classified as disassortative reveal instead assor-
tative behavior to a careful analysis.

DOI: 10.1103/PhysRevE.74.026122 PACS number�s�: 89.75.Hc, 89.75.Da, 89.75.Fb

Complex networks arise in a wide range of interacting
structures, including social, technological, and biological
systems �1�. Although these networks share some generic
statistical features, such as the small-world property and, in
many cases, the scale invariance of the degree distribution,
they also display differences and peculiarities when their
structure is examined in detail.

The mixing properties of a network refer to the attitude of
nodes to connect to similar or unlike peers �2�. Similarity of
nodes is established by comparing some node-dependent sca-
lar quantity describing to a given quality. Networks where
properties of neighboring nodes are positively correlated are
called assortative, while those showing negative correlations
are called disassortative. While assortativity, observed, for
example, in social networks, finds an intuitive explanation in
the fact that people �nodes� tend to build relations �links�
with alike people, disassortativity is more puzzling and there
is an open debate about its origins. A scalar quantity natu-
rally associated to each node in a network is its degree, mea-
suring the number of neighboring nodes. The mixing by de-
gree �MBD� is often measured by looking at how the average
degree Knn of the nearest neighbors of a node depends on the
degree K of the node itself. The mixing is assumed to be
assortative when Knn grows with K and disassortative when
it decreases �3�. The relevance of MBD lies in that, beyond
discriminating among different network morphologies �4,5�,
it reflects important structural properties: Assortative net-
works are found to be more resilient against the removal of
vertexes than disassortative ones �6�. This implies, for ex-
ample, that, when trying to block infection or opinion
spreading within a social network �7� or to protect a com-
puter network against cyber attacks �8�, different strategies
are needed depending on the MBD properties of the under-
lying network. It has recently been observed that the sign of
degree correlations also affects other properties of complex
networks such as synchronization �9�.

Recent studies show that social networks exhibit assorta-
tive MBD, whereas technological and biological ones dis-
play disassortative MBD �10�. The Word Wide Web
�WWW�, a paradigmatic example of worldwide collabora-
tive effort among millions of users and publishers, represents
an anomaly: One would expect it to show assortative mixing,
similarly to other social and collaborative networks, while it

shows evidences of anticorrelations �2�, and disassortative
MBD �11�.

This work focuses on the mixing properties of growing
networks. Our aim is to demonstrate that even in the pres-
ence of genuine positive correlations between the degrees,
spurious negative correlations may be observed. As a conse-
quence, networks previously classified as disassortative re-
veal instead assortative behavior to a careful analysis. To
characterize mixing patterns, one compares the degree of a
node with the average degree of its neighbors. In growing
networks a direction is naturally associated with the links;
accordingly, each node has two kinds of neighbors: those to
whom it links �downstream� and those linking to it �up-
stream�. We show that distinguishing between the two kinds
of neighbors when performing the averages is crucial: posi-
tive correlations between the degree of a node and the aver-
age degree of both upstream and downstream neighbors,
considered separately, may be reversed when the degrees are
averaged together ignoring the different nature of neighbor-
ing sites. The fact that pooling together data of different na-
ture can reverse the results of a statistical analysis is well
known in statistics and often encountered in social sciences,
medical statistics, and finance. As counterintuitive as it may
appear, this property contains no logical contradiction, al-
though it is known in the literature as Simpson’s paradox
�12�.

We show our result on two classes of complex growing
networks: the linear preferential attachment �LPA� model
�13� and the Bianconi–Barabási �BB� fitness model �14�.
Both include as a special case the Barabási-Albert �BA�
model �15�. In these networks links have a natural
direction—from newly added nodes to existing ones. Thus,
in the following we distinguish between upstream and down-
stream neighbors, respectively, along incoming and outgoing
links.

To clarify our argument, we consider in detail the BA
model �where calculations are simpler� before moving to the
LPA and BB models. In the BA model, at each time step a
node is added and attached to the network by m undirected
links according to preferential attachment. A node i �intro-
duced at time i� points to an existing node j with probability
pj�i� proportional to its degree Kj�i� at time i �15�. Although
links are undirected in the original formulation, a direction
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may be assigned to the links in a natural manner, from the
newly added node to the one to preexisting ones. Since m
sets a natural scale for the system, we will express all quan-
tities in units of m and denote them by the superscript �. On
average, the degree of node i grows in time as K˜i�t���t / i
for 1� i� t �15�. The average degrees of neighbors of i,
in m units, read K˜nn,i

�in��t�=� j=i+1
t K˜j�t�p̃i�j� / �K˜i�t�−1� and

K˜nn,i
�out��t�=� j=1

i−1K˜j�t�p̃j�i�, where K˜nn,i
�in��t� and K˜nn,i

�out��t� refer to
the degree of upstream and downstream neighbors, respec-
tively. By approximating the sum by an integral and the de-

gree by its average, one gets K˜nn,i
�in��t�� ln�t / i / �1−�i / t� and

K˜nn,i
�out��t���t / i ln�A�i�, where A is a constant of order 1

whose exact value depends on the initial condition �16�. At a
given time t, we can express the above quantities in terms of

K˜ and drop the i dependence to get K˜nn
�in��K˜ ln K˜ / �K˜ −1� and

K˜nn
�out��K˜ ln�K̄ /K˜�, where K̄=A�t is of order of �and greater

than� the maximum K˜ observable at time t, K˜max��t. Thus

K˜nn
�in� is a monotonically �slowly� increasing function of K˜,

independent of t, and K˜nn
�out� contains a t dependence through

K̄ and for any t is an increasing function of K˜. We conclude
that the degree of a node is positively correlated with the
average degree of both upstream and downstream neighbors.
However, computing the average degree of the neighbors
altogether, correlations seem to vanish since one gets

K˜nn�t�� ln�A�t�, independent from K˜ �17�. These results are
confirmed by numerical simulation of the BA model and

shown in Fig. 1, where histograms of K˜nn
�in�, K˜nn

�out�, and K˜nn are

plotted as functions of K˜ for t=104 and m=100, averaged
over 104 realizations.

Let us now focus on the LPA model �13�, a generalization
of the BA model: according to the same dynamics, at the ith
time step m directed links are drawn from i to j with prob-
ability pj�i��kj�i�+�, where kj�i� is the in-degree of site j at
time i. For �=m, the BA model is recovered. When dealing

with the LPA model, it is convenient to measure quantities in
units �. In the continuous time limit, the time dependence of

the in-degree is k˜i�t�= �t / i��−1 with �= �1+� /m�−1 �13�. The
calculation of the average in-degree of upstream and down-
stream neighbors can be performed in analogy to the BA

model �now k˜nn
�in� and k˜nn

�out�count incoming links only�. The

average degree of upstream neighbors reads k˜nn
�in���k˜

+1�ln�k˜ +1� /k˜ −1, independent from the ratio � /m and thus
coinciding with the result for the BA model, and is mono-
tonically increasing. The average degree of downstream
neighbors is given by

k˜nn
�out� �

1 − �

2� − 1
�k˜ + 1�	
 k̄ + 1

k˜ + 1
��2�−1�/�

− 1� − 1,

where k̄�t�=A����/�2�−1�t�−1, with A���= 2�−1
�1−��2 +21−2�, and

we have dropped the t dependence. Since A����1 for �
�1/2 and 0�A����1 for ��1/2, we have A����/�2�−1�

�1 for any �. Thus k̄�t�+1�k˜max+1� t�, where k˜max is the
maximum in-degree at time t measured in � units. One can
check that in the limit �→m ��→1/2� this expression for

k˜nn
�out� coincides with that found for the BA model in the same

continuous limit approximation. It is clear that k˜nn
�out� is an

increasing function of k˜, both for ��1/2 �where k˜nn
�out�+1

grows as �k˜ +1��1−��/�� and for ��1/2 �where k˜nn
�out�+1

grows as �k˜ +1��. Thus, also for the LPA model, the in-degree
of a node is positively correlated both with the average in-
degree of incoming nearest neighbors and with the average
in-degree of outgoing nearest neighbors. Since the in-degree
differs from the degree by a constant, the same statement
holds for the degree. Disregarding the different nature of the
neighbors and averaging the degree over all nearest neigh-
bors one gets

k˜nn �
k˜ + 1

k˜ + �/�1 − ��
ln�k˜ + 1� +

�

2� − 1

�	
 k̄ + 1

k˜ + 1
��2�−1�/�

− 1�� − 1.

Two different regimes appear, for � /m�1 ���1/2� and
� /m�1 ���1/2�, separated by �=m where the LPA model
coincides with the BA model. The average in-degree of near-

est neighbors increases as a function of k˜ for ��1/2, while
it decreases for ��1/2 �18�. Thus, for the LPA model the
average degree over all nearest neighbors increases or de-
creases for different values of the parameter �, even though
the degree of a node is positively correlated with the average
degree of both upstream and downstream nearest neighbors
for any value of � �19�. In Figs. 2 and 3 we show the results
of our calculation, compared with simulation of the LPA
model for m=100, t=104, and �=5 for the ��1/2 regime
�Fig. 2�, and m=100, t=104, and �=500 for the ��1/2
regime �Fig. 3�.
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FIG. 1. K˜nn
�in� �squares� and K˜nn

�out��triangles� as functions of K˜

from simulations of the BA model, with m=100, t=104, and aver-

aged over 104 realizations. K˜nn is shown in the inset. Solid lines
represent the analytic calculations.
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Finally we consider the BB model �14�, a paradigm for
disassortatively mixed networks �3�, originally proposed as a
realistic model for the WWW. Here, the preferential attach-
ment mechanism is modified to embody the intrinsic hetero-
geneity of nodes by assigning to each node j a quenched
random variable, or fitness, 	 j. The network is grown by
adding a node at each time step and connecting it to m ex-
isting nodes chosen with probability proportional to both
their degree and fitness pj�i+1��	 j�kj�i�+m�. Now kj�i� de-
pends on the realization of the network, and on the quenched
variables �	l�l=1

i . However, for a given quenched disorder the
degree is approximated by kj�t��m��t / j�	j/c−1�, where c de-
pends on the probability distribution of the fitness and equals
1.255. . . for a uniform distribution in �0,1� �see the original
paper by Bianconi and Barabási �14��. Thus kj�t� essentially

depends only on 	 j. This approximation is found to be very
accurate numerically, and we will use it in what follows.
Also, we approximate pj�t� by replacing the normalization
factor �l=1

i 	l�kl�i�+m� with its average value mci �15�. In the
same notations as above, we will measure quantities in units
of m. The average degree of upstream neighbors is given by

k˜nn
in �i , t ,	i�=

	i

ck˜i�t�
� j=i+1

t k˜i�j�+1

j �k˜j�t��; similarly, the average de-

gree of upstream neighbors is k˜nn
out�i , t�=� j=1

i−1 �k˜j�i��k˜j�t�+1��

ci ,
where angular brackets represent the average over 	 j for j
� i, which yields

k˜nn,i
�in��t,	i� =

	i

ick˜i�t�
�

j=i+1

t

�j/i�	i/c−1 �t/j�1/c − 1

ln�t/j�1/c ,

k˜nn,i
�out��t� =

1

i
�
j=1

i

�h„�i/j�2�t/i�… − h�i/j�� ,

where h�x�= �x1/c�ln�x1/c�−1�+1� / ln2�x�. The k˜ dependence

of k̃nn is then obtained by integrating out 	i:

k˜nn
�in��k˜� =

� di� d	k˜nn,i
in �t,	�
„k˜i�t� − k˜…

� di� d	
„k˜i�t� − k˜…

,

which can be performed numerically. The results for a uni-
form distribution of fitness in �0,1�, confirmed by simula-
tions, are shown in Fig. 4. Again, the degree of a node is
positively correlated with the average degree of both up-
stream and downstream neighbors. However, as shown by
Pastor-Satorras et al. �3�, the nearest-neighbor average de-
gree decreases as a function of the degree.
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FIG. 2. k˜nn
�in� �squares� and k˜nn

�out� �triangles� as functions of k˜ for
t=104 from simulations of the LPA model with m=100 and �=5

���1/2� and averaged over 104 realizations. k˜nn is shown in the
inset. Solid lines represent the analytic calculations.
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FIG. 3. k˜nn
�in� �squares� and K˜nn

�out� �triangles� as functions of k˜ for
t=104 from simulations of the LPA model with m=100 and �

=500 ���1/2� and averaged over 104 realizations. k˜nn is shown in
the inset. Solid lines represent the analytic calculations.
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FIG. 4. K˜nn
�in�=k˜nn

�in�+1 �squares� and K˜nn
�out�=k˜nn

�out�+1 �triangles�
as functions of K˜ =k˜ +1 for t=104 from simulations of the BB

model with m=10 and averaged over 104 realizations. K˜nn=k˜nn+1
is shown in the inset. Solid lines represent the corresponding ana-
lytic expressions.
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In conclusion, we have shown that in the analysis of mix-
ing properties of growing networks genuine positive correla-
tions can show up as negative through a reversal mechanism
which is known as Simpson’s paradox. This reversal mecha-
nism affects the statistical analysis and typically takes place
when two inhomogeneous populations are combined to-
gether �here, upstream and downstream neighbors�. Several
notable cases of occurrence have been recognized, for ex-
ample, in the analysis of clinical trials �20�. In the growing
network models examined in this paper, the counterintuitive
effect of Simpson’s paradox on the mixing properties can be
understood as follows: the average neighbors’ degree is
larger on downstream than on upstream neighbors, although
it grows with K in both cases. When computing the average
neighbors’ degree by mixing upstream and downstream
nodes, one should carefully take into account how such mix-
ture changes with K: as K increases, downstream neighbors
contribute less and less to the total average since the out-
degree of every node is a fixed number m. Accordingly, for
small K the average neighbors’ degree is determined mainly

by downstream nodes �with large degrees� while the degree
carried by upstream neighbors—typically smaller—
dominates for large K. As a result, even though the average
neighbors’ degree grows with K when upstream and down-
stream neighbors are considered separately, the total average
may be a flat function of K, as in the BA model case, or even
a decreasing one �LPA model for ��1, BB model�. Such
behavior has often been used to infer disassortativity—for
instance, in the WWW case �11,21�—since it suggests that
nodes with many links are preferably linked to nodes with
poor connectivity. Our work indicates that further analysis is
needed to understand the mixing properties of real directed
networks. In the case of the WWW, recent statistical analysis
carried on of the in- �out-� degree–in �out-� degree correla-
tions qualitatively confirm the presented scenario�22�. A
similar behavior has also been observed in the analysis of
software systems dependences �23�.

We acknowledge useful discussions with M. A. Muñoz.
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